Latest News From Recover To Perform

06 August

So What About Massage?

Published in Latest News

Although the effectiveness of massage to flush out lactic acid after exercise has been disproven, there are benefits to validate its use in sports. "In my own experience," said Keith Grant, head of Sports and Deep Tissue Massage Department at McKinnon Institute, "I've seen that massage is effective. How our body reacts to things depends on both the state our body is in (state of memory), as well as the input." Grant combines his knowledge as a scientist with personal experience as a massage instructor and runner to support his conclusions.

Pointing to a study by Tiitus and Shoemaker (1995) in which effleurage did not increase local blood flow, Grant said, "This is a mechanistic way of looking at what's going on." The difficulty, he noted, in interpreting research results comes from looking for direct, mechanical effects. "Clinically, we see a different story," he said. "Through our techniques we work with the nervous system to relax muscles, but that's not a direct mechanical effect. "I believe the effects of massage also involve the neurological and emotional. My reason for that is the neurological side controls the current (base) state of the muscle activation. The emotional controls the chemical messengers that affect the immune system. What seems likely is massage acts as a new input to a system with a memory. Massage stimulates the mechanoreceptors and can gate off pain receptors. It floods the body with new sensory input. We are using the nervous system to reset the muscle to greater relaxation.

"In my observation, fatigued muscles tend to remain hypertonic and shortened. When we cajole specific muscles to relax and lengthen via mechanical and neurological input, we reduce their metabolic activity. When the muscle relaxes, it's not using energy as much, not metabolizing as fast, not producing waste products and because it's more relaxed, it's not compressed and not exerting pressure on surrounding tissues. This means circulation is better. It's not because we're pushing fluid around. It's because we've put the body in a more optimum state, so the body naturally increases circulation on it's own. By massaging muscles and adding input to the nervous system, we are facilitating the body in recovering faster from exercise. It's not the massage that's doing the healing, it's the person's body."

In a British study of boxers, massage was reported to have a significantly positive effect on perception of recovery, giving scientific credence of its benefits as a recovery strategy. According to the authors, their results support arguments by some researchers that "the benefits of massage (in sports recovery) are more psychological than physiological."20 Grant takes that a step farther. "As a trained scientist, I use what I observe and what I know about physiology to come with a hypothesis. From my own experience in running, when you exert to the point of substantial fatigue, you come back feeling more fragile, in an emotionally vulnerable spot. To have the sense that someone is nurturing, in a sense taking care of you, is a very psychologically emotional thing. In supporting the person, we improve their immune function and their ability to heal, by influencing the chemical environment of their body. It has to do with psychoneuroimmunology, the whole chemical homeostasis of their body -- neurochemicals and the relationship between mood, or feelings, and the immune system.

"There is some evidence that following heavy exercise, both L-glutamine (an amino acid manufactured by the body) and the immune system take a dip. I look at the healing effect of massage as, in some way, counteracting that dip. When you provide support it has a positive effect on immune function. If the person doesn't feel supported and nurtured, it will have a negative effect on the chemical environment, opening them more to catching colds, not healing as fast and decreasing their ability to train. It ties into the whole emotional state of a person. The athlete has to stay healthy in order to continue training. With massage, they can train harder because they are able to recover faster."

Sometimes a "truth" is not what it seems. Take lactic acid. For years, many massage therapists have been taught that lactic acid can and should be flushed from the muscles of athletes after intense activity. This truism has been passed on to clients who have also accepted it as fact. Both therapist and client thus have established and perpetuated a mutual belief system that purging of lactic acid is not only necessary, but also efficiently accomplished with the assistance of massage. Some beliefs die hard. This one and others related to lactic acid have been holding their own, not only in some massage schools and practices, but also in the community at large, despite emerging research to the contrary. Pass the word. There's no need to mess with Mother Nature.

Lactate accumulated from intense exercise actually fuels the body, according to Dr. Owen Anderson, exercise physiologist and editor of Running Research News. In a recent interview from his office in Michigan, Anderson explained the facts.

Lactic acid levels will return to homeostasis quickly post-exercise without any "hands-on" assistance. "Muscles don't need help from massage in removing lactate," said Anderson. "Massage will probably have the biggest effect on venous blood," and by the time massage is administered, lactate has already left the muscle. This is not to say massage isn't beneficial to the athlete. "Massage is good for relaxing," said Anderson, "and provides help increasing flexibility of muscles."

Whitney Lowe, owner and director of Orthopedic Massage Education and Research Institute and author of Functional Assessment in Massage Therapy concurs with Anderson's statements.

"Lactic acid is a natural by-product of any muscular activity. There are elevated levels of lactic acid in muscle tissues after exercise, but that is going to subside either with time or with any type of movement activity, even just walking around the room."

In addition, lactic acid does not cause muscle soreness, fatigue or the "burn" of intensive exercise, noted Anderson. His comments and those of Lowe are backed by valid scientific research. Several studies conducted in the 1980s by exercise physiologist Dr. George A. Brooks ushered in a new perspective on this supposed "demon." Brooks noted that lactic acid is a key substance for providing energy, disposing dietary carbohydrate, producing blood glucose and liver glycogen and promoting survival in stress situations.

To get in touch please use the booking form.

If you require help or have an enquiry please get in touch via our contact form.